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basic alumina for 16 hr led in high yield to 2 (mp 158— 
161°), identical with authentic 2 (mp 157-160°). Finally, 
reduction of 2 with an excess of lithium aluminum hydride 
in ether at - 65° for 90 min22 afforded 50% of 1 (mp 238-
241°), identical with natural bufalin (mp 239-242°). 
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The Preparation of 2-Methoxypentaborane (9), 
a Novel Example of an Alkoxy Polyborane 

Sir: 

We have recently found that l-iodopentaborane(9), 
1-IB5H8, reacts with dimethyl ether to produce 2-meth-
oxypentaborane(9), 2-(CH3O)B5H8, in moderate yield. 
The only other examples of neutral alkoxypolyboranes 
have the general formula ROB10H13 and are prepared by 
a complex reaction between NaB10H13 and a solution of 
I2 in various ethers.1 The position of attachment of the 
alkoxy group is not known, but has been discussed.2 

A previous study of the reaction of 1-BrB5H8 with di
methyl ether resulted in the preparation of 2-BrB5H8 and 
1-CH3B5H8, but no tractable alkoxy derivatives OfB5H9 

were observed.3 

In a typical preparation of 2-(CH3O)B5H8, 1.317 g 
(6.97 mmoles) of 1-IB5H8 was allowed to react with 
20.7 mmoles of liquid (CH3)20 fori 5 hr at -12° . High-
vacuum fractional distillation of the pale yellow reaction 
mixture yielded 0.161 g (1.73 mmoles, 25%) of 2-(CH3O)-
B5H8. There was 4.9 mmoles of (CH3)20 consumed. 
Substantial quantities OfB5H9, B(OCH3)3, and CH3I, a 
relatively small amount of HB(OCH3)2, and traces of H2 

were also produced in the reaction. A side product of 
low volatility has prevented quantitative estimation of the 
1-IB5H8 recovered from the reaction. 

This new B5H9 derivative is a colorless liquid which 
freezes as a glass at -196°. Upon warming the glass 
begins to flow and then crystallizes. The melting point is 
in the vicinity of - 100°. Representative vapor pressures 
are 4.4 ± 0.2 mm at 0° and 15.5 ± 0.2 mm at 20°. 
Moderately rapid decomposition occurs in the liquid 
phase such that the vapor pressures are of qualitative 
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value only. In the gas phase at low pressure (~7 mm) 
no decomposition can be observed after 12 hr at ambient 
temperature (infrared). 

The mass spectrum of 2-MeOB5H8, obtained using 
AEI MS-9 and CEC 21-103 spectrometers, is consistent 
with that expected for an alkoxypentaborane(9). The 
cutoff at m/e94 corresponds to the parent ion 12CH3-
1 6O 1 1B 5H 8

+ : calcd m/e 94.12754; found 94.12751 ± 
0.00010 (estimated error range). The most intense peak 
in the spectrum at m/e 43 corresponds to 12CH3

16O-
1 1BH+ ; calcd m/e 43.03552; found 43.03549 ± 0.00010. 

The n B n m r spectrum of 2-(CH3O)B5H8 (at 32.1 MHz) 
is very similar in appearance to that of 2-FB5H8.4 The 
chemical shifts (8 in parts per million from BF3O-
(C2H5)2 + 0.2), coupling constants (J in Hz ± 5), and 
relative areas are given in Table I. The extreme separa
tion between the B(2) and B(4) resonances suggests that 
2-(CH3O)B5H8 is more closely related, electronically, to 
2-FB5H8 than to any other known B(2)-substituted 
B5H9 derivative. 

Table I 

B(2)-OCH3 
B(3, 5)-H 
B(4)-H 
B(I)-H 

5 

-14.1 
+ 16.8 
+ 31.5 
+ 55.0 

J 

158 
160 
170 

Area (rel) 

1.00 
1.99 
0.99 
1.04 

The 1H nmr spectra of 2-(CH3O)B5H8 (at 60 and 
100 MHz) show the presence of two bridge hydrogen 
regions, as does the spectrum of 2-FB5H8.4 Overlap of 
other areas of the spectra makes assignments for H-B3 5, 
H-B4, and H-B1 ambiguous, but the general appearance 
is similar to that of 2-FB5H8. The methoxy resonance of 
2-(CH3O)B5H8 at -3 .56ppm is substantially shifted 
from that of (MeO)3B at - 3.09 ppm. 

The gas-phase infrared spectrum of 2-(CH3O)B5H8 

contains major bands (cm - 1 + 10) at 3005 (w), 2960 (w), 
2870 (w), 2600 (s), 1985 (w, br), 1850 (w, br), 1475 (m), 
1315 (s, br), 1005 (m), 950 (w), 875 (m),_825 (w). The two 
broad bands at 1985 and 1850 cm - 1 are tentatively 
attributed to the two types of bridge hydrogens indicated 
in the 1H nmr spectra. The band at 1475 c m - 1 is 
attributed to the methoxy methyl deformation, and the 
band at 1005 cm - 1 is probably due to a C-O stretch. 

Boron trichloride reacts with 2-(CH3O)B5H8 to form 
what appears to be a 1:1 complex. Solutions of the 
complex in CS2 and BCl3 exhibit 11B nmr spectra similar 
to those expected for a mixture of 2-ClB5H8 and ROBCl2 

(which appears to undergo rapid exchange with excess 
BCl3). Subsequent isolation of 2-ClB5H8, however, is 
not possible unless the mixture is heated to ~ 50°. Further 
studies of this behavior are in progress. 
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